organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(4-Bromophenyl)-3-(3,4-dimethylphenyl)prop-2-en-1-one

Yu-xia Zhou

Shandong Vocational College of Science and Technology, Weifang 261061, People's Republic of China

Correspondence e-mail: zhouyuxiajidian@163.com

Received 13 May 2010; accepted 16 May 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.033; *wR* factor = 0.095; data-to-parameter ratio = 15.1.

In the title chalcone derivative, $C_{17}H_{15}BrO$, the dihedral angle between the two benzene rings is $48.13 (4)^{\circ}$. In the crystal, a short $Br \cdots Br$ contact of 3.5052 (10) Å occurs.

Related literature

For a related structure and background to chalcones, see: Fun et al. (2008).

Experimental

Crystal data

C ₁₇ H ₁₅ BrO $M_r = 315.20$ Triclinic, $P\overline{1}$ a = 5.9786 (14) Å b = 7.8437 (19) Å c = 15.744 (4) Å $\alpha = 99.054$ (4)° $\beta = 99.602$ (4)°	$\gamma = 95.659 (4)^{\circ}$ $V = 713.0 (3) \text{ Å}^3$ Z = 2 Mo K α radiation $\mu = 2.87 \text{ mm}^{-1}$ T = 298 K $0.25 \times 0.22 \times 0.20 \text{ mm}$
Data collection	

Bruker SMART CCD diffractometer 3911 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ 173 parameters $wR(F^2) = 0.095$ H-atom parameters constrained S = 1.09 $\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$ 2620 reflections

2620 independent reflections

 $R_{\rm int} = 0.019$

2198 reflections with $I > 2\sigma(I)$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5445).

References

Bruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.

Fun, H.-K., Chantrapromma, S., Patil, P. S., D'Silva, E. D. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, 0954-0955.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2010). E66, o1412 [doi:10.1107/S1600536810018106]

1-(4-Bromophenyl)-3-(3,4-dimethylphenyl)prop-2-en-1-one

Y. Zhou

Comment

As part of our search for new biologically active compounds we synthesized the title compound(I) and report its crystal structure herein.

In the crystal structure of compound(I)(fig.1), the dihedral angle between the two benzene rings(C1—C6) and (C7—C12) is 48.13 (4)°. All of the bond lengths and bond angles are in normal ranges and comparable to those in related structure (Fun *et al.*, 2008).

Experimental

A mixture of 4-bromohypnone (0.02 mol) and 3,4-dimethylbenzaldehyde (0.02 mol) and 10%NaOH (5 ml) was stirred in ethanol (30 ml) for 1.5 h to afford the title compound (yield 73%). Yellow blocks of (I) were obtailed by recrystallization from ethyl acetate at room temperature.

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93-0.96 Å, and with $U_{iso}(H) = 1.2U_{eq}$ of the parent atoms.

Figures

Fig. 1. The molecular structure of (I) with displacement ellipsoids are drawn at the 30% probability level.

1-(4-Bromophenyl)-3-(3,4-dimethylphenyl)prop-2-en-1-one

Crystal data	
C ₁₇ H ₁₅ BrO	Z = 2
$M_r = 315.20$	F(000) = 320
Triclinic, <i>P</i> T	$D_{\rm x} = 1.468 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 5.9786 (14) Å	Cell parameters from 2198 reflections
b = 7.8437 (19) Å	$\theta = 1.3 - 25.5^{\circ}$
c = 15.744 (4) Å	$\mu = 2.87 \text{ mm}^{-1}$

supplementary materials

$\alpha = 99.054 \ (4)^{\circ}$	<i>T</i> = 298 K
$\beta = 99.602 \ (4)^{\circ}$	Bar, yellow
$\gamma = 95.659 \ (4)^{\circ}$	$0.25 \times 0.22 \times 0.20 \text{ mm}$

V = 713.0 (3) Å³

Data collection

Bruker SMART CCD diffractometer	2198 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.019$
graphite	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.3^{\circ}$
phi and ω scans	$h = -7 \rightarrow 7$
3911 measured reflections	$k = -9 \rightarrow 6$
2620 independent reflections	$l = -18 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.095$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.048P)^{2} + 0.2458P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{max} < 0.001$
2620 reflections	$\Delta \rho_{max} = 0.45 \text{ e } \text{\AA}^{-3}$
173 parameters	$\Delta \rho_{min} = -0.60 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.048 (4) methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br	0.57731 (6)	0.43242 (4)	0.100602 (19)	0.06655 (18)
C11	0.5449 (5)	0.3857 (3)	0.21288 (17)	0.0440 (6)

0	0.2750 (3)	0.2761 (3)	0.48223 (13)	0.0628 (6)
C10	0.7328 (5)	0.4220 (4)	0.27985 (18)	0.0482 (6)
H10A	0.8724	0.4717	0.2706	0.058*
C17	0.4645 (5)	0.2760 (4)	0.46327 (17)	0.0455 (6)
C12	0.3349 (5)	0.3142 (4)	0.22550 (18)	0.0506 (7)
H12A	0.2100	0.2898	0.1796	0.061*
C9	0.7107 (4)	0.3834 (3)	0.36099 (17)	0.0448 (6)
H9A	0.8374	0.4048	0.4061	0.054*
C8	0.5010 (4)	0.3129 (3)	0.37593 (16)	0.0395 (5)
C6	1.1464 (4)	0.0981 (3)	0.80706 (18)	0.0453 (6)
C5	0.9589 (4)	0.1781 (4)	0.82839 (17)	0.0448 (6)
C3	0.8289 (4)	0.1904 (3)	0.67426 (17)	0.0408 (6)
C4	0.8024 (4)	0.2208 (3)	0.76150 (17)	0.0437 (6)
H4A	0.6759	0.2714	0.7755	0.052*
C16	0.6528 (5)	0.2356 (3)	0.60745 (17)	0.0437 (6)
H16A	0.5194	0.2656	0.6256	0.052*
C2	1.0206 (5)	0.1157 (3)	0.65442 (18)	0.0459 (6)
H2A	1.0448	0.0967	0.5970	0.055*
C7	0.3131 (5)	0.2796 (4)	0.30725 (17)	0.0464 (6)
H7A	0.1717	0.2335	0.3167	0.056*
C15	0.6631 (5)	0.2384 (4)	0.52402 (18)	0.0477 (6)
H15A	0.7966	0.2164	0.5036	0.057*
C1	1.1749 (5)	0.0697 (3)	0.72054 (19)	0.0474 (6)
H1A	1.3008	0.0184	0.7064	0.057*
C14	0.9249 (6)	0.2180 (5)	0.9221 (2)	0.0674 (9)
H14A	0.7885	0.2726	0.9242	0.101*
H14B	1.0541	0.2950	0.9567	0.101*
H14C	0.9103	0.1119	0.9450	0.101*
C13	1.3147 (6)	0.0413 (4)	0.8765 (2)	0.0635 (8)
H13A	1.4312	-0.0106	0.8501	0.095*
H13B	1.2362	-0.0421	0.9034	0.095*
H13C	1.3838	0.1406	0.9201	0.095*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br	0.0949 (3)	0.0686 (3)	0.0421 (2)	0.01006 (17)	0.01910 (16)	0.02128 (15)
C11	0.0583 (16)	0.0408 (13)	0.0358 (13)	0.0098 (12)	0.0132 (12)	0.0091 (11)
0	0.0507 (12)	0.0955 (16)	0.0468 (11)	0.0114 (11)	0.0174 (9)	0.0161 (11)
C10	0.0477 (15)	0.0507 (15)	0.0470 (15)	0.0019 (12)	0.0133 (12)	0.0092 (12)
C17	0.0508 (16)	0.0485 (15)	0.0367 (13)	0.0058 (12)	0.0101 (11)	0.0043 (11)
C12	0.0514 (16)	0.0571 (17)	0.0394 (14)	0.0025 (13)	-0.0017 (12)	0.0104 (12)
C9	0.0420 (14)	0.0502 (15)	0.0387 (14)	0.0038 (11)	0.0027 (11)	0.0042 (11)
C8	0.0449 (14)	0.0387 (13)	0.0361 (13)	0.0085 (10)	0.0108 (10)	0.0052 (10)
C6	0.0446 (14)	0.0401 (13)	0.0501 (15)	0.0030 (11)	0.0045 (12)	0.0112 (12)
C5	0.0434 (14)	0.0507 (15)	0.0403 (14)	0.0011 (11)	0.0081 (11)	0.0106 (12)
C3	0.0434 (14)	0.0406 (13)	0.0395 (13)	0.0027 (10)	0.0096 (11)	0.0104 (11)
C4	0.0417 (14)	0.0500 (15)	0.0421 (14)	0.0088 (11)	0.0120 (11)	0.0098 (12)

supplementary materials

C16	0.0459 (14)	0.0452 (14)	0.0413 (14)	0.0061 (11)	0.0113 (11)	0.0086 (11)
C2	0.0528 (15)	0.0460 (14)	0.0401 (14)	0.0052 (12)	0.0147 (12)	0.0052 (11)
C7	0.0423 (14)	0.0534 (16)	0.0428 (15)	0.0010 (12)	0.0067 (11)	0.0107 (12)
C15	0.0525 (16)	0.0562 (16)	0.0389 (14)	0.0138 (13)	0.0139 (12)	0.0120 (12)
C1	0.0432 (14)	0.0430 (14)	0.0580 (17)	0.0092 (11)	0.0149 (12)	0.0071 (12)
C14	0.0606 (19)	0.103 (3)	0.0422 (17)	0.0175 (17)	0.0120 (14)	0.0157 (17)
C13	0.0604 (19)	0.067 (2)	0.064 (2)	0.0181 (15)	0.0032 (15)	0.0181 (16)
Geometric paran	neters (Å, °)					
Br—C11		1 898 (3)	C3—	-C2	1 30	96 (4)
C11-C10		1 379 (4)	C3—	-C4	1.39	5 (4)
C11-C12		1.379(1) 1 382(4)	C3—	-C16	1.55	70 (4)
0-C17		1.302(1) 1.219(3)	C4—	-H4A	0.93	soo
C_{10}		1.219(3) 1.382(4)	C16-		1.32	29 (4)
C10—H10A		0.9300	C16-	-H16A	0.93	500
C17-C15		1 480 (4)	C2-	Cl	1.35	89 (4)
C17—C8		1 495 (4)	C2	Н2 Δ	0.93	59 (1) 500
C_{12} C_{7}		1 381 (4)	C2	H7Δ	0.93	500 500
C12_H12A		0.9300	C15-	_H15A	0.93	500 500
C9-C8		1 391 (4)	C1-	-H1Δ	0.93	500 500
С9—Н9л		0.9300	C14-	H14A	0.92	500
C9—11)A		1 396 (4)	C14-		0.96	500
C_{6}		1.390 (4)	C14-		0.96	500
C6-C5		1.307 (4)	C13-		0.96	500
C6_C13		1.400 (4)	C13-	H13R	0.96	500
C5-C4		1.310 (4)	C13-	-H13C	0.96	500
$C_{3} = C_{4}$		1.595 (4)	015-	-11150	0.90	100
$C_{10} C_{11} C_{12}$		1.312(4)	C3	C4 H4A	118	0
C10—C11—C12		121.3(2)	C15	$C_1 = C_1^2$	113	2 (3)
C10— $C11$ — Br		119.1(2) 119.4(2)	C15-	-C16 H16A	127	.2 (3) A
C12— $C11$ — $D1$		119.4(2)	C13-	-C16 H16A	110	4
C11_C10_H10	^	119.1 (2)	C1	$C_1 C_2$	110	9(2)
$C_{11} = C_{10} = H_{10A}$	7	120.5	C1—	$C_2 = U_2 \Lambda$	119	1
C_{9} C_{10} H_{10} A		120.3 122.0(3)	C1—	$C_2 H_2 A$	120	1
0 - C17 - C13		122.0(3)	C12	$C_2 = \Pi_2 A$	120	.1 7 (2)
0 - C17 - C8		119.9(2)	C12-	-C7 = U7A	120	7
C13 - C17 - C8		110.0(2)	C12-	—С/—П/А С7. Н7А	119	7
C11_C12_U12	^	119.1 (2)	C16	$C_1 = C_1 T_1 T_1 T_2$	119	7 (2)
C7 C12 H12A	7	120.5	C16-	-C15 H15A	120	6
C = C = C = C		120.3 120.8(2)	C10-	-C15 H15A	119	6
C10 - C9 - C8		120.8 (2)	C1/-	-C1 $C2$	119	8 (2)
		119.0	C0—	C1-H1A	121	(<i>2)</i> 1
$C_0 - C_7 - C_7$		119.0	C0—	C1H1A	119	1
$C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}$		110.9(2) 123.1(2)	C2—	C14H14A	119	5
C_{7} C_{8} C_{17}		123.1(2) 1170(2)	C5	C14—1114A	109	5
$C_{1} = C_{0} = C_{1}$		117.9(2) 119.0(2)	С.)— H147	H14B	109	5
C1 - C6 - C13		117.0(2) 120.0(2)	C5	C14_H14C	109	5
$C_{1} = C_{0} = C_{13}$		120.0(3) 121.0(2)	С <u>Э</u> —	-C14 = 114C	109	5
CJ-CU-C15		121.0 (3)	П14/	· -01	109	

C4—C5—C6	118.9 (2)	H14B—C14—H14C	109.5
C4—C5—C14	120.0 (2)	C6—C13—H13A	109.5
C6-C5-C14	121.1 (3)	C6—C13—H13B	109.5
C2—C3—C4	118.2 (2)	H13A—C13—H13B	109.5
C2-C3-C16	123.1 (2)	C6—C13—H13C	109.5
C4—C3—C16	118.8 (2)	H13A—C13—H13C	109.5
C5—C4—C3	122.3 (2)	H13B—C13—H13C	109.5
C5—C4—H4A	118.9		

